
Apprise allows you to send a notification to almost all of the most popular notification services available to us
today

Home Discover & Search

Apprise - your push messaging musketeer: one for all (messenger
services)

JS Jörg Schultze-Lutter | Last modified: 13.04.2022 | 4 minutes read

Apprise - your push messaging musketeer: one for all (messenger services)

What is Apprise?

Home Discover & Search

https://tech.bertelsmann.com/en/blog/home
https://tech.bertelsmann.com/en/blog/search
https://tech.bertelsmann.com/en/blog/home
https://tech.bertelsmann.com/en/blog/search
https://tech.bertelsmann.com/en/blog/home

Apprise is an open source application that allows you to send push messages to more than 70 services (Messenger, SMS,

Email, Home Assistant, ...) without having to integrate the individual native APIs of these services on your end.
Messages can be sent to multiple messaging services at the same time, so if a single messaging service fails, the message
is still delivered via backup services.

Apprise was written in Python and can either be used as a standalone program (command line) or integrated into existing

code - there is also a Docker image available. All service-specific credentials are either stored in Apprise-specific configuration

files or can be passed to Apprise as parameters. All credentials are protected and do not appear in log files.

Depending on the capabilities of the messaging service, Apprise supports HTML and/or text messages. In addition, users
can send file attachments, such as log files or images, if supported by the messaging service. To prevent the messaging
process from accidentally blocking your code, Apprise uses asynchronous processing.

Example configuration of Apprise and a Microsoft Teams channel

In the following example I will create a sample configuration of Apprise for sending a message to a Microsoft Teams channel.
Keep in mind that each Apprise-supported messenger service has its own individual configuration documentation, which you
can access either via the main page of the Apprise project or via its wiki. Thus, we first select the Microsoft Teams

configuration documentation for Apprise in the wiki, where we can get generic information about the plugin's

configuration, messaging capabilities, etc.

Creating the Webhook in Microsoft Teams

In order to be able to configure Apprise for Microsoft Teams, we first need to set up a so-called Incoming Webhook. This

Webhook can be configured in Microsoft Teams, asssuming that you are an administrator of the channel in question. To do this,
first go to your channel in Microsoft Teams and then click on the three dots behind the name of your channel, and select the
menu item Connectors.

https://github.com/caronc/apprise
https://github.com/caronc/apprise-api
https://hub.docker.com/r/caronc/apprise
https://github.com/caronc/apprise/wiki/config
https://github.com/caronc/apprise
https://github.com/caronc/apprise/wiki
https://github.com/caronc/apprise/wiki/Notify_msteams
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook

To create a new Webhook, click the Incoming Webhook item's Configurebutton. If you need to edit this webhook later
or look up the Webhook's URL again, select Manage /Configured instead.

The data required for creating a webhook is rather limited. You just have to specify a name and an optional icon for your
webhook.

Once the webhook is created, create a copy of the link and close this dialog.

Your webhook will look something like this:

https://bcp.webhook.office.com/webhookb2/f13637ba-adcb-4312-8966-a1b2c3ddefd8@d8aa127b-66d4-
4ff2-1234-abbf1234daab/IncomingWebhook/09abdfba21b046d7a172d5133199293f/9b22a5e7-7dda-4bb3-
1317-82b13e9ff09

We now need to convert this webhook into the Apprise-specific format so that it can be used by Apprise's Microsoft
Teams plugin. To do this, we follow the plugin's wiki documentation.

https://bcp.webhook.office.com/webhookb2/f13637ba-adcb-4312-8966-a1b2c3ddefd8@d8aa127b-66d4-4ff2-1234-abbf1234daab/IncomingWebhook/09abdfba21b046d7a172d5133199293f/9b22a5e7-7dda-4bb3-1317-82b13e9ff09
https://github.com/caronc/apprise/wiki/Notify_msteams

The resulting link looks like this:

msteams://bcp/f13637ba-adcb-4312-8966-a1b2c3ddefd8@d8aa127b-66d4-4ff2-1234-
abbf1234daab/09abdfba21b046d7a172d5133199293f/9b22a5e7-7dda-4bb3-1317-82b13e9ff09

Time for a test run!

Now that we've finished configuring the Apprise plugin, we can finally send a message to our Microsoft Teams channel.
To do this, we pass a message body as well as an optional message title to Apprise in addition to the configuration we just
created:

apprise -t "Hello BCP Community" -b "Apprise messaging test"
msteams://bcp/f13637ba-adcb-4312-8966-a1b2c3ddefd8@d8aa127b-66d4-4ff2-1234-
abbf1234daab/09abdfba21b046d7a172d5133199293f/9b22a5e7-7dda-4bb3-1317-82b13e9ff09

In the following example, I use PyCharm to call the Apprise application/API, but this call could just as easily have been made
via command line or else by calling Apprise as a library from your code.

unsafe:about:blank

In case of success, Apprise should then return a return code of 0 and the message should be visible in your Microsoft Teams
channel.

Create your own Messenger plugin

If your favorite messenger service is not available in Apprise, it is easy to implement new plugins, provided of course that your
messenger service offers an appropriate API.

Preferably, check if an existing Apprise plugin service matches your messenger's feature set in message format and
parameters and then use this plugin as a template for your new messenger service. Alternatively, you can take a look at the
developer wiki, where the basics of creating your own plugin are discussed.

For the creation of the actual plugin the following files / directories might be relevant:

The apprise/apprise/plugins directory. This is where you keep your messenger plugin. You will also find all

existing plugins in this directory.
The file apprise/apprise/utils.py defines regular expressions that are used to validate the input parameters of

your later plugin. Normally you will not have to make any changes here.
Additionally, you should provide a test of your plugin under apprise/tests.

Please note that your plugin code must provide Python2 backwards compatibility; this requirement will be enforced as
part of the pull request's validation process.

https://github.com/caronc/apprise/wiki/Development_Contribution

The opinions and information stated in this article are personal to the individual author and do not necessarily represent Bertelsmann.

About the Author

JS

Tags

Finally, when creating new plugins, I always recommend to provide a corresponding wiki page, which shows how the plugin
can be used and which restrictions like text format and length it has.

Questions / Comments

If you are interested in creating your own plugin and contributing to Apprise's code base, feel free to drop me a line,
check out my contribution to Apprise's codebase, or get in touch with Apprise's core developer Chris.

Jörg Schultze-Lutter
Arvato

https://github.com/caronc/apprise/wiki/Notify_dapnet
https://github.com/caronc

