
Home Discover & Search

A practical introduction to Github Actions and Workflows

JS Jörg Schultze-Lutter | Last modified: 13.04.2022 | 9 minutes read

A practical introduction to Github Actions and Workflows

Home Discover & Search

https://tech.bertelsmann.com/en/blog/home
https://tech.bertelsmann.com/en/blog/search
https://tech.bertelsmann.com/en/blog/home
https://tech.bertelsmann.com/en/blog/search
https://tech.bertelsmann.com/en/blog/home

Learn how you can use Github Actions and Workflows for automation purposes

Table of Contents

Introduction

Setting up our first Github Workflow

Workflow Structure

Workflow Trigger

Workflow Environment Variables

Workflow Jobs and Steps

Exchanging variables between different Jobs

Workflow Example: Creating and Deploying Pypi Python Packages

Caveat emptor

Introduction

Github Actions and Workflows can be used to automate processing steps for a Github repository so that, for example, defined

processing steps can be performed automatically when checking in code, creating new releases, etc. You can also create your
own Workflows from scratch.

https://github.com/features/actions

In the following article, we will first look at one of Github's standard workflows and then explore further steps using a workflow I
developed for deploying Python packages to the Python Package Index (PyPi) on a new release. The associated code sample
of this workflow has been intentionally split into multiple processing steps so that you can learn how to pass parameters
between Jobs and reuse existing code.

But let's start with the basics first and install our first Github Workflow which will perform a code security check for us whenever
we apply changes to our repository.

Setting up our first Github Workflow

To set up a Github Workflow, the repository must first be in 'public' status. Workflows as well as Github Actions are of course
available for 'private' repositories, but in this case you have to pay for the execution of the actions.

In the following example I assume that our repository' visibility is 'public'.

The Github Actions menu of the repository is accessed via the Actions tab. Here the developer can either select one of the
predefined Workflows or create his own Workflow.

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

For our first example, we select the CodeQL Analysis Workflow and click the Configure button.

In the next window we get access to the code associated with this Workflow, which we may want to amend and/or save to a
different file name. For our example, we do not apply any changes and save that Workflow under its default name codeql.yml
using Start commit followed by Commit new file button.

Our new Workflow is automatically activated after saving with the trigger predefined in the YAML source code (e.g. push or
pull_request; we will discuss these options in the next chapter).

Using the Actions menu of the repository, we can see the state of the Workflow, results for future Workflow runs, and disable
the Workflow if needed. Based on the trigger configuration for this CodeQL Workflow, a security analysis of the code is now

automatically performed for each push or pull request of new code into this repository.

We have successfully installed and activated our first Github Workflow.

Workflow Structure

Workflows are YAML files which are always located in the .github/workflow directory of the respective Github repository.

Subsequent changes to a Workflow are therefore possible at any time via changes to the associated file. It should be noted
that the change to a Workflow YAML file usually triggers and activates this file itself after saving, since one has made changes
to the repository. If you want to prevent this behavior, the Workflow should be deactivated before a change. (Disable
workflow).

A Workflow consists of :

a Trigger information for the Workflow. This Trigger determines when the script is to be activated (e.g. on every code push)

an optional area, in which global variables can be defined.

1...n Jobs, which in turn consist of 1...n Steps. These are the actual tasks that we intend to have executed.

https://en.wikipedia.org/wiki/YAML

other sections which are not part of this article

Workflows are executed based on freely definable Triggers. Such a Trigger can be, for example, a code push or a new
release. Within these main Triggers, further selection criteria can be defined, which, for example, only activate an action for a
code push if this push has occurred for the master branch.

Each Workflow normally acts independently of other Workflows. Each Workflow consists of one or more Jobs, which act
independently of each other by default – even if they are stored in the same Workflow file. However, it is also possible to create
dependencies between the respective Jobs, so that, for example, Job B is only executed after Job A has finished. If a Workflow
consists of multiple Jobs, an error in one Step will also abort all Steps and Jobs of the subsequent processing tasks.

Workflow Trigger

A Workflow trigger is defined by the keyword 'on', followed by one or more main conditions. Additional sub-conditions can be

defined for each main condition. Example:

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

on:
 release:
 types: [published]
 branches: [master]
 push:

For the main conditions an 'or' consideration is made, while for the sub-conditions an 'and' linkage is applied. For the previous
example, this means that the action is executed on a published master release or on a normal push.

Workflow Environment Variables

Variables are defined in the optional section 'env' and have a global scope over all possible Jobs of this Workflow. Example:

env:
 SOURCE_FILE: ./MyDir/MyFile.py

Your Jobs and Steps can reference to these environment variables and use their values. Example:

 # Read source file
 - name: Read source file
 id: reader
 uses: juliangruber/read-file-action@v1
 with:
 path: ${{ env.SOURCE_FILE }}

Workflow Jobs and Steps

Jobs represent the actual processing steps that we want to automate via our Workflow. A Job has a name and consists of 1...n
Steps. These steps are processed sequentially, assuming an error-free run. Each Step, as the smallest unit, is in turn assigned
a name as well as a unique ID, which can then be used within a Task to reference the results of a preceding processing Step,
for example. If the Workflow also supports parameters for Github Actions, these can also be specified for the Step.

If Workflow consists of several Jobs and no dependencies are defined between the Jobs, then all defined Jobs within this
YAML Workflow file are executed in parallel. Variables to be passed from one Job to its successor must be passed using the
outputs-needs construct. Additionally, an operating system is assigned to each Job by keyword runs-on (Github-hosted

Runners), so that one can start e.g. Workflows on Windows machines (or on own infrastructure) if necessary.

To build a Workflow’s Jobs, one can use predefined Actions from the Github Actions Marketplace. These Actions require the

developer to use them with a separator '@' and mandatory version info - omitting the version information will result in an error.
See the upcoming example for details.

Whenever a Workflow is executed, it uses a checked-out version of your repository. This means that changes made to the
repository by your Workflow are not persisted unless you instruct your Workflow to do so.

Minimal sample Workflow structure

name: My Package Name
on:
 release:
 types: [published]
 branches: [master]
env:
 PYTHON_VERSION: '3.8'
jobs:
 my-first-job:
 runs-on: ubuntu-latest
 steps:
 - name: step 1

https://docs.github.com/en/github-ae@latest/actions/using-jobs/defining-outputs-for-jobs
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/about-self-hosted-runners
https://github.com/marketplace?type=actions
https://github.com/marketplace/actions/verified-commit

 id: unique_id
 uses: Github Marketplace Action@version
 with:
 parameter: 'some value'

Subsequent Steps of the same Job can later reference and access the results of the previous job via the value of the id field.

Exchanging variables between different Jobs

To exchange values between individual Jobs, the outputs-needs construct must be used. Example:

jobs:
 #
 # BEGIN of Job 1
 #
 get-python-version-info:
 runs-on: ubuntu-latest

 # Output which is passed to the PyPi publication job
 outputs:
 my-program-version: ${{ steps.regex.outputs.group1 }}
 steps:

 # Run regex on content and try to get the version data
 - name: get version via regex
 id: regex
 uses: actions-ecosystem/action-regex-match@v2
 with:
 regex: ${{ env.REGEX_PATTERN }}

https://docs.github.com/en/github-ae@latest/actions/using-jobs/defining-outputs-for-jobs

 flags: 'gim'
 text: '${{ steps.reader.outputs.content }}'
 #
 # END of Job 1
 #

 #
 # BEGIN of Job 2
 #

 deploy-to-pypi:
 runs-on: ubuntu-latest
 needs: get-python-version-info

 steps:

 # Build the Python package.
 - name: Build package
 run: export GITHUB_PROGRAM_VERSION='${{ needs.get-python-version-info.outputs.my-program-versio

Workflow Example: Creating and Deploying Pypi Python Packages

In the following example, we use a workflow to publish a Python package to the Test and Production environments of the
Python Package Repository (PyPi). The publishing process will be triggered for pre-releases as well as real releases.

The actual Workflow is divided into two Jobs.

The first Job (get-python-version-info) checks if the version number of the (pre)release in Github is identical to the version info

defined in our Python source code and aborts the Workflow if the version data is different.

If both version infos match, the first job passes that version info to the second job (publish-to-pypi) using the outputs-needs
construct. Our second Job creates the release package and uploads it to PyPi Test. If there is no pre-release but a full release in

progress, that created package is also uploaded to PyPi Production.

For both tasks, we use a Workflow I developed. This action requires only a few configuration steps for deployment and
activation and is therefore universally usable. All configuration steps are described in detail in the associated repository:
https://github.com/joergschultzelutter/pypi-publish-workflow

Here’s one of my repositories where I use this Workflow: https://github.com/joergschultzelutter/robotframework-

apprise/actions/workflows/publish-to-pypi.yml

On the left side we first see our name of the Workflow (Upload Python Package) and on the right side the corresponding
actions that have been executed by this Workflow. If we click on one of these Workflow runs, we get access to the two Jobs of
our task (get-python-version-info and deploy-to-pypi):

https://docs.github.com/en/github-ae@latest/actions/using-jobs/defining-outputs-for-jobs
https://github.com/joergschultzelutter/pypi-publish-workflow
https://github.com/joergschultzelutter/robotframework-apprise/actions/workflows/publish-to-pypi.yml

These tasks can then be broken down into the individual Steps by clicking on a Jobs:

Steps with a crossed-out circle symbol were not executed.

Check out the documentation of this workflow if you want to learn more about it.

Caveat emptor

Finally, I would like to discuss the most important do's and don'ts in connection with Github Actions:

If a Workflow is not started despite correct trigger, you should first check not only the actual trigger of that Workflow (push,

release) but also whether the Github Actions service has been affected by technical problems.

Github Actions does not natively provide an option or keyword for Workflows to be canceled / aborted. There is a separate third-
party Action Keyword for this on the Github Marketplace. It is important to know that the execution of this Github Action

https://github.com/joergschultzelutter/pypi-publish-workflow/blob/master/docs/workflow.jpg
https://www.githubstatus.com/
https://github.com/marketplace/actions/cancel-this-build

The opinions and information stated in this article are personal to the individual author and do not necessarily represent Bertelsmann.

About the Author

keyword does not lead to an immediate termination of the Workflow - you may be forced to use a combination of sleep commands

and If…Then queries in order to avoid the remaining Steps and Jobs from being executed.

When using a Github 'on release' Trigger, the Workflow's Trigger does not distinguish between Pre-Releases and Releases. If your

Workflow is only supposed to be run for Releases, you need to programmatically e.g. abort the Workflow in case of Pre-Releases.

Details: have a look at my PyPi Workflow example.

If your Workflow is going to execute external programs such as Python and these external programs depend on ‘exported’

environment variables to be set, it should be noted that the lifespan of a variable’s export is limited to a single Step within its

Job/Workflow. This means that if you cannot export a variable in Step A and use it in Step B. Fortunately, a step can consist of

several concatenated commands, meaning that a Step like in the following example is valid:

- name: Build package
 run: export GITHUB_PROGRAM_VERSION='${{ needs.get-python-version-info.outputs.my-program-versio

JS

Tags

#automation #github

Share Article

Newest job offers

Jörg Schultze-Lutter
Arvato

Senior Backend Engineer (C#/.Net) (m/f/d)

Berlin, BE, DE, 10623

IT Security Engineer (m/f/d)

Berlin, Baden-Baden, Verl, Osl, BE, DE, 10623

https://www.xing.com/app/user?op=share;url=https%3A%2F%2Ftech.bertelsmann.com%2Fen%2Fblog%2Farticles%2Fa-practical-introduction-to-github-actions-and-workflows
https://twitter.com/share?text=A%20practical%20introduction%20to%20Github%20Actions%20and%20Workflows&url=https%3A%2F%2Ftech.bertelsmann.com%2Fen%2Fblog%2Farticles%2Fa-practical-introduction-to-github-actions-and-workflows&hashtags=automation%2Cgithub
mailto:?body=https%3A%2F%2Ftech.bertelsmann.com%2Fen%2Fblog%2Farticles%2Fa-practical-introduction-to-github-actions-and-workflows&subject=A%20practical%20introduction%20to%20Github%20Actions%20and%20Workflows

